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beef tendon in water, and Kiintzel and Doehner8 

found 1.18 kcal. mole - 1 for hide powder in water. 
The tendons used by Wohlisch and de Roche-

mont, and those used by Tobolsky and co-workers 
as well, were not cross linked, apart from cross 
linkages present in the native tendon or formed 
adventitiously in the course of the procedure. As 
noted above, they determined Ts rather than Tm. 
For these reasons we consider their stress-tempera
ture coefficients to be unsuitable for the application 
of the thermodynamic equation 1 and the low value 
of AS reported by Tobolsky and co-workers conse
quently to be in error. The entropies of fusion re
corded in the last column of Table V compare favor
ably with those for other polymers. They are not 
abnormally low, as claimed by Tobolsky and co
workers.13 

All of the results cited, in common with those of 
the present paper, represent enthalpy changes per 
mole of peptide units present in native collagen 
rather than per mole of those units which are 
crystalline. To the extent that the native collagen 
may contain non-crystalline regions, correction is 
required to obtain the heat of fusion per mole of 
units which undergo melting. The percentage of 
crystallinity in collagen is unknown. The physical 
properties (e.g., elastic modulus) of the native fiber 
suggest that native collagen is predominantly crys
talline, and hence that the mentioned correction is 
small, if not negligible. 

The diluent melting method applied by Garrett5 

to the ethylene glycol-collagen system gives directly 
the heat of fusion per mole of crystalline polymer. 
Unfortunately, application of this method to the 
collagen-water system is fraught with difficulties 
posed by extensive solvolysis during the long periods 
of time during which the sample must be subjected 
to elevated temperatures.30 For collagen-ethylene 

Introduction 
The theories of non-Newtonian viscosities of 

rigid particles developed by Saito2'3 and by Kirk-
wood and his co-workers4 afford a new method for 
the determination of the rotary diffusion coefficient, 

Cl) Cardiovascular Research Institute, University of California 
Medical Center, San Francisco 22, California. 

(2) N. Saito, / . Phys. Soc. Japan, 6, 297 (1951). 
(3) H. A. Scheraga, J. Chem. Phys., 23, 1526 (1956). 
(4) J. G. Kirkwood, ReC Irav. chim., 68, 649 (1949); J. G. Kirkwood 

and P. L. Auer, J. Chem. Phys., 19, 281 (1951); J. G. Kirkwood and 
R. J. Plock, ibid., 24, 665 (1956). 

glycol, Garrett obtained AHn — 2.25 kcal. mole"1. 
The smaller value for AHU found by us could con
ceivably be due to the presence of an appreciable 
proportion of amorphous material in native collagen. 
We are inclined to reject this explanation in consid
eration of the evident high degree of crystallinity 
of native collagen. We suggest instead that the 
smaller value of AHn for collagen in water is attrib
utable to an intrinsic difference in solvating effects 
of the two solvents. 

The reduction in the enthalpy of fusion by KCNS 
is striking. Complexing of collagen with thiocya-
nate evidently reduces the enthalpy in the amor
phous state considerably more than in the native 
(crystalline) state. This is not surprising in view of 
the greater accessibility of functional groups in the 
amorphous (dissolved) state. 

It will be observed that whereas 3 M KCNS re
duces AiIu by a factor of nearly three, it lowers Tm

l 

only from 333 0K. (in water) to 287 0K. The 
entropy change A5U accompanying melting, given 
in the last column of Table V, is reduced propor
tionately almost as much as AHn. This result is 
consistent with formation of ionic complexes in the 
amorphous state, with resultant decrease in entropy. 

Finally, we note the somewhat surprising ob
servation of a decrease, in exothermicity of dilution 
with addition of KCNS to the medium (see values 
of Ki in Table II). It is as if the protein complex 
with thiocyanate is less hydrophyllic than the hy
drate formed with water alone. More effective satu
ration of polar functional groups by KCNS could 
conceivably account for this observation. 

(30) L. P. Witnauer and J. G. Fee, / . Polymer Set., 26, 141 (1957), 
reported AH11 = 7.2 — 8.0 kcal./mole based on the dependence of 
7V under zero stress on the concentration of water in cross-linked cow
hide collagen. Again, the use of 7Y rather than T1n

1 casts doubt on 
the results. 

9. The validity of the theories were confirmed 
experimentally in previous publications.6 These 
earlier studies, however, were designed to cover as 
wide a range of shearing stresses as possible (up to 
10B dynes cm. -2) at the expense of precision. For 
very elongated or flattened particles this is neither 
necessary nor practical, and it seems desirable, 
therefore, to further explore this subject by using 

(5) J. T. Yang, J. Am. Chem. Soc., 80, 1783 (1958); ibid., 81, 3902 
(1939). 
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The non-Newtonian viscosity and flow birefringence of tobacco mosaic virus (TMV) were measured over a three-decade 
range of shearing stress, T. The hydrodynamic lengths, L, as determined from the two methods were comparable a t high r 
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Ubbelohde-type viscometers which adequately 
cover the shear range of interest. 

Until recently the flow birefringence technique 
was the only convenient method for determining 
the 6 of rigid particles. With the development of 
the viscosity method, it is now possible to study 
the molecular shapes of rigid particles with either 
technique. It seems also of interest to compare the 
effect of polydispersity on these hydrodynamic 
measurements. In a recent paper6 it has further 
been suggested that the intrinsic viscosity at zero 
shear can be determined by a combination of the 
two methods without extrapolation of the viscosi
ties to zero shear. Complications due to poly
dispersity that would be expected to arise have 
still not been investigated. 

It is now generally recognized that the mathe
matical models used in the hydrodynamic calcu
lations do not necessarily resemble the actual 
molecules in size and/or shape. A further exami
nation of the extent to which the interpretations 
of hydrodynamic properties in terms of these models 
can be trusted seems highly desirable. It is with 
these objectives in mind that we have made a more 
detailed study of the non-Newtonian viscosity and 
flow birefringence of tobacco mosaic virus. The 
actual characterization of this protein has already 
been excellently described by Boedtker and 
Simmons.7 

Experimental 
A. Material.—The tobacco mosaic virus (TMV) solu

tion was obtained through the courtesy of Dr. N. S. Simmons 
of the Atomic Energy Project, University of California at 
Los Angeles. 

All the chemicals were of reagent grade. The phosphate 
buffer was made up with 0.008 M Na2PO4 and 0.002 M 
NaH2PO4 , containing 10~3 M Versene (adjusted to pH 7.4). 
The final pH was 7.2. 

B. Viscosity Measurements, (a) Viscometers.—Three 
Ubbelohde-type viscometers were specially designed to 
cover a wide range of shearing stresses, T. One was modi
fied after Hermans and Hermans8 with a precision-bore 
tubing attached to the capillary, which constitutes a con
tinuously varying pressure head when filled with the solu
tion. Usually about thirty experimental points were taken 
for each solution. The other two were multi-gradient vis
cometers having four and five bulbs, respectively. In 
Table I are listed the relevant geometrical data of the three 

instruments which were calibrated with mercury. For 
the 5-bulb viscometer, where kinetic energy and end effects 
were no longer negligible, the viscosities were calculated from 
the equation 

D 

Type 
Continuously 

varying pressure 
head 

4-bulb 

5-bulb 

TABLE I 

IMBNSIONS OF VISCOMETERS 

Capillary 
Radius, 
R1 cm. 

0.02051 
.02156 

.0I67 0 

Length, 
L1 cm. 

282.0 
25 .4 0 

3 .6 I 0 

Volume 
of flow, 
V, ml. 

0.1242 per cm. 
(D 
(2) 
(3) 
(4) 
(D 
(2) 
(3) 
(4) 
(5) 

1.0O0 

1.495 
2 . 0 I 8 

3.00g 
0.99g 
1.5I0 

1.996 

2.5O7 

3.02 0 

Range of 
shearing 

stress0 

r, dynes 
cm.~! 

0.05-1.K 
3 .13 2 

6.180 

9 .4 I 6 

I I .84 
14.9g 
24.97 
35.7g 
4 7 . 1 3 

58.O2 
a Based on water at 25.0° 

rj — at p/t2 

(6) J. T. Yang, J. Phys. Chem., 62, 894 (1958). 
(7) H. Boedtker and N. S. Simmons, J. Am. Chem. Soc, 80, 2550 

(1958). 
(8) J. Hermans, Jr., and J. J . Hermans, Proc. Koninkl. Ned. Akad. 

Wetenschap., B61, 324 (1958). 

Here a and /3 are two constants characteristic of the geo
metrical dimensions of the viscometer and also of the solu
tion used. In all cases the constants, as determined with 
water at two temperatures, were found in excellent agree
ment with those calculated from the capillary dimensions. 

(b) Calculations.—Details of the calculations of the 
maximum shearing stresses at the capillary wall and the 
nominal rates of shear for the multi-gradient viscometers 
have already been described elsewhere.5 With the con
centrations used in this paper corrections to the rates of 
shear due to inhomogeneous flow were found to be negli
gible in all cases. All the intrinsic viscosities at constant 
shearing stress5 were calculated according to the Huggins' 
equation. No corrections due to the density difference 
between solution and solvent9 were applied, since they were 
quite insignificant in this case. 

The viscosities as measured under a continuously vary
ing pressure head were treated according to Hermans and 
Hermans' equation8 

1 _ 2 LS T / d In Ah\ / At \ / d a In A/A ~1 
V irdgR* L V dt I VdIn Ah)\ di2 ) ' 

(2) 

77 = viscosity of the solution or solvent 
Ah = ht — km = distance between the meniscus and 

the equilibrium position 
t = flow time 
R and L = radius and length of the capillary, respectively 
5 = cross-section area of the wide precision-bore tubing 

containing the solution or solvent 
d = density of the solution or solvent 
g = acceleration of gravity 

In most cases, in particular with very dilute solutions, the 
last term in equation 2 may be omitted without introducing 
significant errors. Thus we have 

w (solution) _ (d In Ah/At)K\veut , 
?; (solvent) (d In A/j/dOsoiuUon 

at any chosen pressure head, Ah. 
The differentials in equation 3 can be determined from 

a In Ah versus t plot. Or better, the experimental data can 
be programmed into an equation which assumes the first 
three terms of a power series 

t = O0 + Oi In Ah + O2 (In AhY (4) 

where a0, fli and O2 are constants characteristic of the solu
tion used. Thus the d In Ah/dt at any chosen pressure head, 
Ah, can be computed with great ease. Needless to say, the 
last term in equation 4 drops out for the solvent viscosity. 
(Strictly speaking, the solution of equation 4 is by no means 
unique, but it should be quite adequate for our purposes.) 

To use equation 4 one must first know precisely the h 
values, for example, with a high-precision cathetometer. 
For solvent alone the equilibrium position, h&, at infinite 
time can be located automatically by the computer so as 
to give a constant slope of dlnA/z/d< throughout the entire 
range of Ah. I t turned, however, that the computed ha> 
always differed slightly from the observed he>. In the pres
ent case ha> (computed) — ha (obsd.) = 0.080 out of a total 
pressure head of about 24 cm., presumably due to the 
surface tension, drainage and other errors. This dis
crepancy cast some doubt on the calculated viscosities of the 
solutions, for which the ha, could not be computed because 
of the presence of non-Newtonian viscosity and therefore 
the value for the solvent was employed for all the calcu
lations. To what extent ha for the solution was different 
from that for the solvent could not be determined. The 
error introduced should be negligible so long as Ah is very 
large, but it certainly can become very serious when Ah 
reduces to, say, below 5 cm. I t is noted that any small error 
in Ah and, in turn, the relative viscosity could be mani
fested several times in the final specific viscosities. 

C. Flow Birefringence Measurements.—Both the ex
tinction angles and birefringences were measured in a Rao 

(9) C. Tanford, J. Phys. Chem., 59, 798 (1955). 
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Fig. 1.—Shear dependence of the intrinsic viscosities of 
tobacco mosaic virus, including the calculated values of 
Wr/^(x)a,p. See text for detail. 

J 2 M 

0 10 20 30 40 

Shearing stress, T ( = Dim dynes cm. ~2) 
Fig. 2.—Intrinsic extinction angles and birefringence 

increments of tobacco mosaic virus as a function of shearing 
stress. 

Flow Birefringence Instrument, Model 4-B. The methods 
of_ operations have been described elsewhere.10 The in
trinsic extinction angles, xo, were calculated from an em
pirical equation10 

cot 2x - cot 2x„ + KC (5) 

where x is the extinction angle for concentration, C, at 
constant rate of shear, D, and i t is a constant. For TMV 
solutions in the concentration range studied (<0.4%) this 
concentration dependence was rather small but definitely 
measurable. 

D. Calculations of the Hydrodynamic Length.—With 
the determination of the rotary diffusion constant, 0, 
from either the non-Newtonian viscosity or the flow bire
fringence measurements, the hydrodynamic lengths at 
various shearing stresses were calculated from the Perrin's 
equation, assuming a prolate ellipsoid of revolution model 
for the protein11 

f - i s S r . * 2 1 - * - " (6) 

where in, is the viscosity of the solvent, T the absolute tem
perature, k the Boltzmann constant, o the semi-major axis 
and p the axial ratio of the ellipsoid. 

Results and Discussion 
A. Intrinsic Viscosities and Flow Birefringence. 

—The intrinsic viscosities of tobacco mosaic 
virus, as determined from the three viscometers, 

(10) J. T. Yang, J. Am. Chem. Soc., 80, 5139 (1958). 
(11) F. Perrin, J. phys. radium, [71 S, 497 (1934). 

Fig. 3.—Hydrodynamic lengths of tobacco mosaic virus 
as calculated from non-Newtonian viscosity (•) and flow 
birefringence (O). 

are summarized in Fig. 1. The marked drop in 
[rj]T with increasing shearing stress, r, was what 
would have been expected for rigid particles.6 

The intrinsic extinction angles, xo, as a function 
of the T are shown in Fig. 2, where the smooth 
curve was made possible by the use of equation 5 
which greatly minimized the scattering of the ex
perimental points. Also included in Fig. 2 are 
the birefringence increments, An/C, at one con
centration. The shape of the curve, which ap
peared to approach saturation at high shear, 
clearly indicated that TMV is comprised of rigid 
particles. 

B. The Mean Hydrodynamic Lengths.—From 
the results in Figs. 1 and 2 the a values at various 
shears can be calculated by using the theoretical 
tables3,6'12 and assuming an approximate axial 
ratio (in this case, p = 25). Here a is defined as 
the ratio of the rate of shear, D, to the rotary dif
fusion coefficient, G, from which the lengths, 
L ( = 2a), can be determined by means of equa
tion 6. In Fig. 3 are shown the results from both 
the viscosity and the flow birefringence methods. 

The viscosity-average length at zero shear was 
estimated in the following way: By definition 
the intrinsic viscosity is 

M = NV. r/100 M (7a) 
or, for a prolate ellipsoid 

[n]M = (4,r JY/300) (o») (»/£») (7b) 

where Vt is the effective hydrodynamic volume 
of the particle,13 M its molecular weight, a its 
semi-major axis, p its axial ratio, N the Avogadro 
number and v Simha's viscosity increment.14 

For large p values the term (v/p2) is very insensitive 
to the variations in p, thus providing a simple 
method of estimation of the length of the equiva
lent ellipsoid. This method has been shown to 
be as good as the commonly-used flow birefring
ence method.16 By using the relationship [»;] = 
KM1-1 for rigid particles we have estimated, 
together with Boedtker and Simmons' data,7 

a molecular weight of about 44 X 106 for our sample. 
Thus according to equation 7b the length at zero 

(12) H. A. Scheraga, J. T. Edsall and J. O. Gadd, Jr., J. Chem, Phys., 
19, 1101 (1951). 

(13) H. A. Scheraga and L. Mandelkern, J. Am. Chem. Soc, 78, 179 
(1951). 

(14) R. Simha, J. Phys. Chem., 44, 25 (1940). 
(15) J. T. Yang, to be published. 
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shear was about 4100 A. if p was taken as 25 
(or 4000 A. ioxp = 20). 

The most striking feature in Fig. 3 was the varia
tion of the lengths with the shears. This was due 
to the different averages obtained from the two 
methods, even though both obey the same orienta
tion distribution function. The flow birefringence 
average is quite complicated and still not well 
understood. Goldstein and Reichmann16 have 
shown that as the shear approaches zero AFBR = 
(<a 6 >/<a 3 >) l / l , which is more heavily weighted 
by the longer particles than the weight-average 
value. They have also suggested a number-
average, OFBR = l / < a _ 1 > when the shear becomes 
infinite. The situation is somewhat less compli
cated for the viscosity method. It is generally 
recognized that the viscosity-average at zero shear 
is closer to the weight-average. At any finite 
shear the mean lengths would be weighted by the 
longer particles more than a weight-average and 
the reason for the appearance of a maximum at 
low shear has been discussed previously.5 Once 
all the particles are oriented parallel to the stream 
lines (as the shear approaches infinity) there 
will be no further drop in viscosity and all the 
particles would again be expected to contribute 
to the solution viscosity in the same proportion as 
at zero shear, thus probably approaching the same 
average as in the latter case. The cross-over of 
the two curves in Fig. 3 may be explainable by a 
similar line of reasoning. The foregoing data 
also show that flow birefringence results are ex
tremely sensitive to the degree of polydispersity, 
much more so than viscosity. Both curves in Fig. 
3, however, appeared to level off gradually at high 
shear. This merely confirms the fact that the 
apparently constant length in any narrow range 
of shear could easily be misleading unless a wide 
range of shear is covered. 

C. Combination of Viscosity and Flow Bire
fringence.—In a previous paper6 it has been sug
gested that the intrinsic viscosity of rigid particles 
at zero shear can be determined by a combination 
of non-Newtonian viscosity and flow birefringence. 
This is made possible by the relation 

W T / H T - O = F{X)a,p (8a) 

or 
[v]r/F{X)a,p = [,]T_0 (8b) 

where the F (x)<*,P values can be read from a cali
bration curve6 (the effect of p being insignificant 
for highly asymmetric particles). For mono-
disperse systems this method offers an independent 
check for the intrinsic viscosity values as determined 
by direct extrapolation to zero shear. Of more 
interest is the fact that it provides a convenient 
way to determine which model, prolate or oblate, 
fits better with the actual molecules. Complica
tions would certainly arise if the particles are 
polydisperse. This was clearly shown from the 
MT/F (x)«,P curve in Fig. 1. The over- and 
under-correction at low and high shears could 
again be explained by the different averages of 
the two methods in the said ranges of shear. 
Suffice it to say, the evaluation of MT-*O by this 

(16) M. Goldstein and M. E. Reichmann, J. Am. Chem. Soc, 76, 
3357 (1954). 

Fig. 4,—Effect of polydispersity on the [rt]T/F(x)a,v values 
for systems having hypothetic molecular-weight distribu
tions: (a) a most probable distribution, D.P. = 1200 and 
Iv, = 1800 A.; (b) 3:1 mixture of prolate ellipsoids having 
2a = 900 and 1800 A.; (c) 3:1 mixture of oblate ellipsoids 
having 26 = 900 and 1800 A. The upper and lower curves 
in each case represent the use of correct and incorrect 
models, see text for explanation. 

method could involve several per cent, errors under 
these conditions. To further illustrate this point 
we have plotted in Fig. 4 the results of three hypo
thetical molecular-weight distributions17: (a) a 
most probable distribution for rods having a weight-
average degree of polymerization of 1200 and length 
of 1800 A., (b) a 3:1 mixture of two prolate ellip
soids having lengths of 900 and 1800 A. and (c) a 
similar mixture for oblate ellipsoids. In each case 
the upper curve represented the use of F(X)<Z,P 
for the right model and the lower one for the 
wrong model. As can be seen the extrapolated 
MrA=O values from high shear differed by less 
than 10% from its true value. Recently Reich
mann has reached essentially the same conclusion.18 

As expected, the hydrodynamic properties of 
TMV agree better with a prolate than an oblate 
ellipsoid, since the MT/F(X)<,,P values based on 
the latter model (not shown in Fig. 1) would 
have deviated further from the required horizontal 
line. I t can be said that the substitution of an 
oblate model for a prolate always results in a 
downward deviation, whereas the wrong choice of 
a prolate instead of an oblate becomes overcor-
rected.6 Some uncertainty might arise when by 

(17) P. J. Flory, "Principles of Polymer Chemistry," Cornell Uni
versity Press, Ithaca, New York, 1953, Chapter VIII. 

(18) M. E. Reichmann, J. Phys. Chem., 63, 638 (1959). 
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shear coincidence the Wr/Fixia.p values of a very 
polydisperse system of oblate ellipsoids might 
show little or no deviations from the horizontal 
line. This complication, however, can easily 
be resolved by taking into consideration the varia
tions of the calculated lengths based on the chosen 
model with the applied shear. 

D. Equivalent Hydrodynamic Ellipsoids.—It 
has been a common practice to assume that proteins 
can be treated as ellipsoids of revolution. By so 
doing it automatically implies that the hydrody
namic measurements of a protein can only yield 
information concerning an equivalent ellipsoid 
which gives the same intrinsic viscosity, sedimen
tation coefficient and translational and rotational 
diffusion coefficients as the actual molecule, al
though the latter does not exactly fit any simple 
mathematical model. (This idea of an equivalent 
hydrodynamic ellipsoid was first proposed by 
Sadron as early as in 194219 and lately discussed 
in detail by Scheraga and Mandelkern.13) Very 
recently question has been raised as to the applica
bility of the hydrodynamic equations, such as 
Perrin's (equation 6), to models other than those 
employed in the theoretical treatments. Boedtker 
and Simmons7 reported that the flow-birefringence 
length of TMV was about 15% higher than that 
from the light scattering study, a fact seemingly 
indicative of the failure of Perrin's equation for 
rodlike particles. Subsequently Haltner and 
Zimm20 made a careful study of the rotary frictional 
coefficient (JkT/Q) of model rods and prolate 
ellipsoids. These rigid brass models were care
fully machined, each having an over-all length 
of 10.16 cm. and an axial ratio of 20. The latter 
was chosen to approximate the ratio found for 
TMV, thus allowing a direct comparison between 
their data and those for the protein. According 
to these authors the reciprocal of the rotary dif
fusion coefficient for the rod (square ends), l /9 r , 
was 40% greater than that calculated on the basis 
of Burger's approximation for rods21 and the ratio 
of the coefficients between the ellipsoid and rod 
was Qe/Qt = 1-56. The latter finding seemed to 
confirm the inadequacy of Perrin's equation for 
rodlike particles. I t is noted that the two models 
used in these experiments differed in volumes, 
although they had the same length and axial 
ratio. If one adopts a not unreasonable assump
tion that the volume of the equivalent ellipsoid 
is identical with that of the rigid, unsolvated rod, 
then a hypothetic equivalent ellipsoid which re
tains the same axial ratio of 20 yields some very 
interesting results. Letting a and b be the semi-
major and -minor axes of the ellipsoid and the 
subscript ee be the equivalent ellipsoid, we then 
have (2/3) aee bee

2 = a A 2 and aee/ar — bee/br = 
1.145. Now by comparing the rotary diffusion 
coefficient of this equivalent ellipsoid with that 
of the previous ellipsoid having a smaller volume, 
one finds that Qt/Qee = 1.50, which indeed agrees 
very well with Haltner and Zimm's experimental 

(19) C. Sadron, Cahiers Phys., 12, 26 (1942); J. Chem. Phys., 44, 
22 (1947); Progress Biofhys. Chem., 3, 237 (1953). 

(20) A. J. Haltner, and B. H. Zimm, Nature, 184, 265 (1959). 
(21) J. M. Burgers, "Second Report on Viscosity and Plasticity of 

the Amsterdam Academy of Science," Nordemann, New York, 1938. 

value of 1.56. Thus Perrin's equation (for pro
late ellipsoid) appears to be equally applicable to 
these "fat" rods, although the major and minor 
axes of the equivalent ellipsoid in this particular 
case were 14.5% higher than the length and di
ameter of the rod. This hypothetic model is 
by no means unique, but it at least gives us a 
self-consistent approximate relationship between 
a "fat" rod and its equivalent hydrodynamic 
ellipsoid. 

Now let us reconsider Boedtker and Simmons' 
data on TMV in the light of the above discussion. 
(Their preparation was essentially uniform, thus 
providing a better test for the theoretical equations 
than the sample used in this paper.) With the 
reported [y]T =0 = 0.367 and Af = 39 X 106 and 
by assuming p — 20, one finds from Equation 
7b a viscosity-average length of 3,610 A. Or, 
one can estimate the hydrodynamic length from 
the Svedberg equation for sedimentation which 
for large p values can be approximated as 

o = [M (1 - Vp)/&irnaNS\ In 2p (9) 

where F is the partial specific volume of the solute, 
p and Tj0 are the density and viscosity of the sol
vent and 5 is the sedimentation coefficient. Given 
5 = 1885, V = 0.73 and Af = 39 X 106, the cal
culated,, length ( = 2a) of TMV turned out to be 
3,630 A. if p was again taken as 20. Boedtker 
and Simmons' flow birefringence-average length 
at moderately high shear was about 3,500 A. 
Thus all three hydrodynamic methods gave con
sistent results for an equivalent length of about 
3,600 A. (The choice of p = 20 seems reasonable 
from our present knowledge of TMV. Boedtker 
and Simmons' calculation was presumably based 
on a p value of 23.8, and their reporte^d length 
would have been approximately 3,300 A. if the 
same p = 20 were used instead. It is noted that 
the flow birefringence-average length of a poly
disperse system becomes smaller at higher shear 
(see Fig. 3).) On account of the earlier discus
sion the length of the rodlike particle as deduced 
from the hydrodynamic measurements would have 
been 3,600/1.145 or about 3,100 A. which was in 
perfect agreement with the reported light scattering 
result of 3,200 ± 160 A. Thus there seems to 
exist a certain relationship between a fairly simple 
rodlike particle and its equivalent hydrodynamic 
ellipsoid. Such an agreement may sound rather 
speculative, but one certainly should not dis
regard it as shear coincidence unless more experi
ments of this type indicate otherwise. 

Although the length of the equivalent ellipsoid 
can be estimated with less ambiguity from hy
drodynamic properties (due to insensitivity toward 
variations in p), determination of the diameter 
or minor axis (2b) and volume is very uncertain 
without knowing the exact p value. In principle 
one can calculate both volume and axial ratio from 
the (3- and 5-functions of Scheraga and Mandel
kern.13 The same data of Boedtker and Simmons 
gave /3 = 2.61 X 106 (from [rj\ and s) and 5 = 1.06 
(from [r)] and 9). The former corresponded to a 
p value of 18.5. If experimental errors were con
sidered to be about ± 2%, the p values would 
vary from 16 to 21, which fell into the range ob-
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served from the X-ray and electron microscope 
studies. The 8 value corresponded to a p of only 
8. By assuming a ± 15% error (about three times 
that for 0) the calculated p varied from 5 to 20. 
Thus all one can say from the data is that the minor 
axis of the equivalent ellipsoid for TMV is probably 
around 180 A. No attempt will be made to esti
mate the effective volume of the equivalent el
lipsoid since the uncertainty involved is even 
greater than that for the length and thickness. 

Knowledge of the limiting equivalent con
ductance A0 is necessary for the calculation of the 
various coefficients which appear in the theoretical 
conductance equation. This information is readily 
available for solvents of dielectric constant greater 
than about 10, but as the dielectric constant de
creases, only the quotient K&/Ao2 can be determined 
with any precision, regardless of how good the data 
are, due to the long extrapolation involved when 
the association constant K^ becomes large. Until 
recently, the only means for estimating limiting 
conductances in solvents of lower dielectric con
stant was Walden's rule, which is known to vary 
systematically with solvent composition.2 The 
use of tetrabutylammonium tetraphenylboride to 
determine single ion conductances in non-aqueous 
solvents3 without recourse to transference data, 
when combined with the equation 

R = £== + s/D (1) 
which relates the Stokes radius R of an ion to the 
dielectric constant D of the solvent,4 permits 
in principle the evaluation of the limiting conduct
ance A0 of any electrolyte in any given solvent of 
known dielectric constant. The purpose of this 
paper is to present a test of this working hypothe
sis. By measuring the conductance of tetrabutyl-
ammonium nitrate in mixtures of acetonitrile and 
carbon tetrachloride and combining the results 
with previous data for tetrabutylammonium and 
tetramethylammonium tetraphenylborides in the 
same solvent system, the limiting conductance of 
tttramethylammonmm nitrate in these mixtures 
can be predicted. Comparison of the calculated 
values with the experimentally determined con
ductances of tetramethylammonium nitrate shows 
agreement within about 1% over the approximate 

(1) California Research Corporation Postdoctoral Fellow, Yale 
University, 1959-1960. 

(2) H. Sadek and R. M. Fuoss, J. Am. Chem. Soc, 72, SOl (1950); 
76, 5897, 5902, 5905 (1954); 81, 4507 (1959). 

(3) R. M. Fuoss and E. Hirsch, ibid., 82, 1013 (1960). 
(4) R. M. Fuoss, Proc. Natl. Acad. Sci. U. S., 45, 807 (1959). 
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range 11 ^ D ^ 36, which is much better than could 
have been achieved by application of Walden's 
rule in its original form. 

Experimental 
Tetramethylammonium nitrate was a sample prepared by 

Dr. O. V. Brody several years ago from tetramethylam
monium bromide by passing a solution through a column 
packed with Amberlite XE75 (Cl) which had been charged 
with nitrate ion. The effluent (halogen free) was slightly 
yellow; it was decolorized with charcoal. The solution was 
evaporated to dryness under vacuum, and the residue was 
twice recrystallized from conductance grade methanol; 
density, 1.25 at 25°. Tetrabutylammonium nitrate was 
prepared from pure tetrabutylammonium bromide and silver 
nitrate solutions; after separation of silver bromide and 
vacuum evaporation of the water, the salt was recrystallized 
from benzene (15 g./lOO ml.); m.p. 119°; density, 0.909 
at 25°. Acetonitrile and carbon tetrachloride were purified 
as described in an earlier paper.5 Solutions were made up 
by weight. Two conductance cells were used; they were 
calibrated using aqueous potassium chloride solutions6 and 
have constants 0.073993 ± 0.000006 and 0.39099 ± 0.00004. 
All measurements were made at 25 ± 0.002°. Dielectric 
constants (1 megacycle), viscosities and densities were 
determined for all solvent mixtures used; the physical con
stants are summarized in Table I . The conductance data 

TABLE I 

PROPERTIES OF SOLVENTS 

No. CCU, wt. % D 100 v P 

1 0.00 36.01 3.449 0.7768 
2 63.20 18.91 4.796 1.1478 
3 63.85 18.45 4.822 1.1527 
4 68.46 16.99 5.076 1.1944 
5 68.71 17.02 5.078 1.1975 
6 74.54 14.65 5.429 1.2547 
7 75.81 13.93 5.551 1.2676 
8 78.84 12.29 5.800 1.3000 
9 80.80 11.35 5.961 1.3226 

are summarized in Tables II and I I I where the solvents are 
identified by the code numbers of Table I . 

(5) D. S. Berns and R. M. Fuoss, J.Am. Chem. Soc, 82, 5585 (1960). 
(6) J. E. Lind, Jr., J. J. Zwolenik and R. M. Fuoss, ibid., 81, 1557 

(1959). 
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The conductance of tetrabutylammonium and of tetramethylammonium nitrates in acetonitrile-carbon tetrachloride mix
tures was measured over the range 11 < D < 36 a t 25°. Using these data and previous results for the corresponding tetra
phenylborides, a comparison was made between the directly observed limiting conductance of Me4N-NOs in the various mix
tures, and the calculated values obtained by using data for the other three salts and a form of Walden's rule modified to 
account for electrostatic ion-solvent interaction. Agreement was within about 1%. 


